pyspark.pandas.
DatetimeIndex
Immutable ndarray-like of datetime64 data.
Optional datetime-like data to construct index with.
One of pandas date offset strings or corresponding objects. The string ‘infer’ can be passed in order to set the frequency of the index as the inferred frequency upon creation.
Normalize start/end dates to midnight before generating date range.
Set whether to include start and end that are on the boundary. The default includes boundary points on either end.
When clocks moved backward due to DST, ambiguous times may arise. For example in Central European Time (UTC+01), when going from 03:00 DST to 02:00 non-DST, 02:30:00 local time occurs both at 00:30:00 UTC and at 01:30:00 UTC. In such a situation, the ambiguous parameter dictates how ambiguous times should be handled.
‘infer’ will attempt to infer fall dst-transition hours based on order
bool-ndarray where True signifies a DST time, False signifies a non-DST time (note that this flag is only applicable for ambiguous times)
‘NaT’ will return NaT where there are ambiguous times
‘raise’ will raise an AmbiguousTimeError if there are ambiguous times.
If True, parse dates in data with the day first order.
If True parse dates in data with the year first order.
Note that the only NumPy dtype allowed is ‘datetime64[ns]’.
Make a copy of input ndarray.
Name to be stored in the index.
See also
Index
The base pandas Index type.
to_datetime
Convert argument to datetime.
Examples
>>> ps.DatetimeIndex(['1970-01-01', '1970-01-01', '1970-01-01']) DatetimeIndex(['1970-01-01', '1970-01-01', '1970-01-01'], dtype='datetime64[ns]', freq=None)
From a Series:
>>> from datetime import datetime >>> s = ps.Series([datetime(2021, 3, 1), datetime(2021, 3, 2)], index=[10, 20]) >>> ps.DatetimeIndex(s) DatetimeIndex(['2021-03-01', '2021-03-02'], dtype='datetime64[ns]', freq=None)
From an Index:
>>> idx = ps.DatetimeIndex(['1970-01-01', '1970-01-01', '1970-01-01']) >>> ps.DatetimeIndex(idx) DatetimeIndex(['1970-01-01', '1970-01-01', '1970-01-01'], dtype='datetime64[ns]', freq=None)
Methods
all(*args, **kwargs)
all
Return whether all elements are True.
any([axis])
any
Return whether any element is True.
append(other)
append
Append a collection of Index options together.
argmax()
argmax
Return a maximum argument indexer.
argmin()
argmin
Return a minimum argument indexer.
asof(label)
asof
Return the label from the index, or, if not present, the previous one.
astype(dtype)
astype
Cast a pandas-on-Spark object to a specified dtype dtype.
dtype
ceil(freq, *args, **kwargs)
ceil
Perform ceil operation on the data to the specified freq.
copy([name, deep])
copy
Make a copy of this object.
day_name([locale])
day_name
Return the day names of the series with specified locale.
delete(loc)
delete
Make new Index with passed location(-s) deleted.
difference(other[, sort])
difference
Return a new Index with elements from the index that are not in other.
drop(labels)
drop
Make new Index with passed list of labels deleted.
drop_duplicates()
drop_duplicates
Return Index with duplicate values removed.
droplevel(level)
droplevel
Return index with requested level(s) removed.
dropna()
dropna
Return Index or MultiIndex without NA/NaN values
equals(other)
equals
Determine if two Index objects contain the same elements.
factorize([sort, na_sentinel])
factorize
Encode the object as an enumerated type or categorical variable.
fillna(value)
fillna
Fill NA/NaN values with the specified value.
floor(freq, *args, **kwargs)
floor
Perform floor operation on the data to the specified freq.
get_level_values(level)
get_level_values
Return Index if a valid level is given.
holds_integer()
holds_integer
Whether the type is an integer type.
identical(other)
identical
Similar to equals, but check that other comparable attributes are also equal.
indexer_at_time(time[, asof])
indexer_at_time
Return index locations of values at particular time of day (example: 9:30AM).
indexer_between_time(start_time, end_time[, …])
indexer_between_time
Return index locations of values between particular times of day (example: 9:00-9:30AM).
insert(loc, item)
insert
Make new Index inserting new item at location.
intersection(other)
intersection
Form the intersection of two Index objects.
is_boolean()
is_boolean
Return if the current index type is a boolean type.
is_categorical()
is_categorical
Return if the current index type is a categorical type.
is_floating()
is_floating
Return if the current index type is a floating type.
is_integer()
is_integer
Return if the current index type is a integer type.
is_interval()
is_interval
Return if the current index type is an interval type.
is_numeric()
is_numeric
Return if the current index type is a numeric type.
is_object()
is_object
Return if the current index type is a object type.
is_type_compatible(kind)
is_type_compatible
Whether the index type is compatible with the provided type.
isin(values)
isin
Check whether values are contained in Series or Index.
isna()
isna
Detect existing (non-missing) values.
isnull()
isnull
item()
item
Return the first element of the underlying data as a python scalar.
map(mapper[, na_action])
map
Map values using input correspondence (a dict, Series, or function).
max()
max
Return the maximum value of the Index.
min()
min
Return the minimum value of the Index.
month_name([locale])
month_name
Return the month names of the DatetimeIndex with specified locale.
normalize()
normalize
Convert times to midnight.
notna()
notna
notnull()
notnull
nunique([dropna, approx, rsd])
nunique
Return number of unique elements in the object.
rename(name[, inplace])
rename
Alter Index or MultiIndex name.
repeat(repeats)
repeat
Repeat elements of a Index/MultiIndex.
round(freq, *args, **kwargs)
round
Perform round operation on the data to the specified freq.
set_names(names[, level, inplace])
set_names
Set Index or MultiIndex name.
shift([periods, fill_value])
shift
Shift Series/Index by desired number of periods.
sort(*args, **kwargs)
sort
Use sort_values instead.
sort_values([ascending])
sort_values
Return a sorted copy of the index.
strftime(date_format)
strftime
Convert to a string Index using specified date_format.
symmetric_difference(other[, result_name, sort])
symmetric_difference
Compute the symmetric difference of two Index objects.
take(indices)
take
Return the elements in the given positional indices along an axis.
to_frame([index, name])
to_frame
Create a DataFrame with a column containing the Index.
to_list()
to_list
Return a list of the values.
to_numpy([dtype, copy])
to_numpy
A NumPy ndarray representing the values in this Index or MultiIndex.
to_pandas()
to_pandas
Return a pandas Index.
to_series([name])
to_series
Create a Series with both index and values equal to the index keys useful with map for returning an indexer based on an index.
tolist()
tolist
transpose()
transpose
Return the transpose, For index, It will be index itself.
union(other[, sort])
union
Form the union of two Index objects.
unique([level])
unique
Return unique values in the index.
value_counts([normalize, sort, ascending, …])
value_counts
Return a Series containing counts of unique values.
view()
view
this is defined as a copy with the same identity
Attributes
T
asi8
Integer representation of the values.
day
The days of the datetime.
day_of_week
The day of the week with Monday=0, Sunday=6.
day_of_year
The ordinal day of the year.
dayofweek
dayofyear
days_in_month
The number of days in the month.
daysinmonth
Return the dtype object of the underlying data.
empty
Returns true if the current object is empty.
has_duplicates
If index has duplicates, return True, otherwise False.
hasnans
Return True if it has any missing values.
hour
The hours of the datetime.
inferred_type
Return a string of the type inferred from the values.
is_all_dates
Return if all data types of the index are datetime.
is_leap_year
Boolean indicator if the date belongs to a leap year.
is_monotonic
Return boolean if values in the object are monotonically increasing.
is_monotonic_decreasing
Return boolean if values in the object are monotonically decreasing.
is_monotonic_increasing
is_month_end
Indicates whether the date is the last day of the month.
is_month_start
Indicates whether the date is the first day of the month.
is_quarter_end
Indicator for whether the date is the last day of a quarter.
is_quarter_start
Indicator for whether the date is the first day of a quarter.
is_unique
Return if the index has unique values.
is_year_end
Indicate whether the date is the last day of the year.
is_year_start
Indicate whether the date is the first day of a year.
microsecond
The microseconds of the datetime.
minute
The minutes of the datetime.
month
The month of the timestamp as January = 1 December = 12.
name
Return name of the Index.
names
Return names of the Index.
ndim
Return an int representing the number of array dimensions.
nlevels
Number of levels in Index & MultiIndex.
quarter
The quarter of the date.
second
The seconds of the datetime.
shape
Return a tuple of the shape of the underlying data.
size
Return an int representing the number of elements in this object.
values
Return an array representing the data in the Index.
week
The week ordinal of the year.
weekday
weekofyear
year
The year of the datetime.