PredictionModel¶
-
class
pyspark.ml.
PredictionModel
[source]¶ Model for prediction tasks (regression and classification).
Methods
clear
(param)Clears a param from the param map if it has been explicitly set.
copy
([extra])Creates a copy of this instance with the same uid and some extra params.
explainParam
(param)Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
extractParamMap
([extra])Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Gets the value of featuresCol or its default value.
Gets the value of labelCol or its default value.
getOrDefault
(param)Gets the value of a param in the user-supplied param map or its default value.
getParam
(paramName)Gets a param by its name.
Gets the value of predictionCol or its default value.
hasDefault
(param)Checks whether a param has a default value.
hasParam
(paramName)Tests whether this instance contains a param with a given (string) name.
isDefined
(param)Checks whether a param is explicitly set by user or has a default value.
isSet
(param)Checks whether a param is explicitly set by user.
predict
(value)Predict label for the given features.
set
(param, value)Sets a parameter in the embedded param map.
setFeaturesCol
(value)Sets the value of
featuresCol
.setPredictionCol
(value)Sets the value of
predictionCol
.transform
(dataset[, params])Transforms the input dataset with optional parameters.
Attributes
Returns the number of features the model was trained on.
Returns all params ordered by name.
Methods Documentation
-
clear
(param: pyspark.ml.param.Param) → None¶ Clears a param from the param map if it has been explicitly set.
-
copy
(extra: Optional[ParamMap] = None) → P¶ Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using
copy.copy()
, and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.- Parameters
- extradict, optional
Extra parameters to copy to the new instance
- Returns
Params
Copy of this instance
-
explainParam
(param: Union[str, pyspark.ml.param.Param]) → str¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
-
explainParams
() → str¶ Returns the documentation of all params with their optionally default values and user-supplied values.
-
extractParamMap
(extra: Optional[ParamMap] = None) → ParamMap¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters
- extradict, optional
extra param values
- Returns
- dict
merged param map
-
getFeaturesCol
() → str¶ Gets the value of featuresCol or its default value.
-
getLabelCol
() → str¶ Gets the value of labelCol or its default value.
-
getOrDefault
(param: Union[str, pyspark.ml.param.Param[T]]) → Union[Any, T]¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
-
getParam
(paramName: str) → pyspark.ml.param.Param¶ Gets a param by its name.
-
getPredictionCol
() → str¶ Gets the value of predictionCol or its default value.
-
hasDefault
(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶ Checks whether a param has a default value.
-
hasParam
(paramName: str) → bool¶ Tests whether this instance contains a param with a given (string) name.
-
isDefined
(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶ Checks whether a param is explicitly set by user or has a default value.
-
isSet
(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶ Checks whether a param is explicitly set by user.
-
abstract
predict
(value: T) → float[source]¶ Predict label for the given features.
New in version 3.0.0.
-
set
(param: pyspark.ml.param.Param, value: Any) → None¶ Sets a parameter in the embedded param map.
-
setFeaturesCol
(value: str) → P[source]¶ Sets the value of
featuresCol
.New in version 3.0.0.
-
setPredictionCol
(value: str) → P[source]¶ Sets the value of
predictionCol
.New in version 3.0.0.
-
transform
(dataset: pyspark.sql.dataframe.DataFrame, params: Optional[ParamMap] = None) → pyspark.sql.dataframe.DataFrame¶ Transforms the input dataset with optional parameters.
New in version 1.3.0.
- Parameters
- dataset
pyspark.sql.DataFrame
input dataset
- paramsdict, optional
an optional param map that overrides embedded params.
- dataset
- Returns
pyspark.sql.DataFrame
transformed dataset
Attributes Documentation
-
featuresCol
= Param(parent='undefined', name='featuresCol', doc='features column name.')¶
-
labelCol
: Param[str] = Param(parent='undefined', name='labelCol', doc='label column name.')¶
-
numFeatures
¶ Returns the number of features the model was trained on. If unknown, returns -1
New in version 2.1.0.
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.
-
predictionCol
= Param(parent='undefined', name='predictionCol', doc='prediction column name.')¶
-