pyspark.sql.functions.schema_of_csv¶
-
pyspark.sql.functions.
schema_of_csv
(csv: ColumnOrName, options: Optional[Dict[str, str]] = None) → pyspark.sql.column.Column[source]¶ Parses a CSV string and infers its schema in DDL format.
New in version 3.0.0.
Changed in version 3.4.0: Supports Spark Connect.
- Parameters
- csv
Column
or str a CSV string or a foldable string column containing a CSV string.
- optionsdict, optional
options to control parsing. accepts the same options as the CSV datasource. See Data Source Option for the version you use.
- csv
- Returns
Column
a string representation of a
StructType
parsed from given CSV.
Examples
>>> df = spark.range(1) >>> df.select(schema_of_csv(lit('1|a'), {'sep':'|'}).alias("csv")).collect() [Row(csv='STRUCT<_c0: INT, _c1: STRING>')] >>> df.select(schema_of_csv('1|a', {'sep':'|'}).alias("csv")).collect() [Row(csv='STRUCT<_c0: INT, _c1: STRING>')]